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Abstract

In crowded solutions the presence of many cosolutes often affects the stability of compact polymers, such as globular proteins. Important

examples of crowded environments are those inside some cells, where protein stability or aggregation rates are affected by the presence of co-

existing bio-macromolecules. In the present article the concept of depletion force from colloidal physics and theoretical techniques developed for

polymer science have been applied to study the effects of macromolecular crowding on protein stability. A continuous three-dimensional polymer

model is used to simulate the behavior of protein under the conditions of macromolecular crowding and the depletion force based on such a model

is calculated. Calculated results have been compared with the measured results in our laboratory, where the enhancement of the forces required to

unfold ubiquitin molecules in a solution crowded with dextran has been measured using single-molecule atomic force microscopy techniques.

Comparison between the calculated results and experimental observations shows that only qualitative agreement has been reached in the sense that

both show a larger force required because of crowding as a protein molecule is mechanical stretched, but the magnitude of the enhancement of the

unfolding force theoretically predicted is small compared to the measured value. Possible sources of discrepancy and improvements of the model

are discussed.

q 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The study of macromolecular crowding effects on protein

properties has a long history [1–3] and has simulated revival of

activities [4–6] due to current interests on protein aggregations

as a potential cause for neurodegenerative diseases. This is

because the cellular environments are often packed with other

biomolecules and this crowdedness may affect the stability and

aggregation rates of proteins inside cells. To simulate the

crowded environments in vitro, scientists often add inert

crowding agents to protein solutions. However, up to now, all

experimental investigations on macromolecular crowding

effects are based on measurements of bulk properties of

protein solutions [1–7]. In a recent experiment in our

laboratory [8], single-molecular techniques based on atomic

force microscopy (AFM) are employed to measure directly the

effects of macromolecular crowding on the mechanical force

required to unfold a single protein molecule. Details of our
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experiment are reported somewhere else [8] and the purpose of

the present article is to present a theoretical treatment of the

subject, including the theoretical formulation, numerical

simulations and calculations of the enhancement of the

mechanical unfolding force due to macromolecular crowding.

Our theoretical approach is developed based on the idea of

depletion force, which is a concept widely used in colloidal and

soft-matter physics [9–13]. The theory of depletion force was

first developed by Asakura and Oosawa [9] in the late 1950s

and rediscovered decade later by Vrij [10]. Briefly stated, the

theory predicts the existence of an effective attractive force

acting between two hard particles suspended in a solution

which contains many cosolute molecules. This force arises

from an overall gain of entropy of this composite system. When

two suspended hard particles are in contact with each other, the

cosolute molecules gain more space, in which they can freely

move, therefore, the entropy of the overall system is higher

than that when the two hard particles are far apart.

In the application to the studies of macromolecular

crowding effects on protein aggregations, the prediction of

the depletion force theory can be briefly described as follows:

in a solution in which protein co-exists with other macromol-

ecules, we assume that no direct interactions exist between two

protein molecules, between protein and crowder molecules, or

between two crowder molecules. That means, for simplicity in
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presenting the essentials, we assume that both protein and

crowding molecules can be represented by hard spheres with

radii given by Rp and Rc, respectively, for protein and

crowders. Then associated with each protein molecule is a

depletion zone (Vex) of the size of ð4p=3ÞðRpCRcÞ
3, inside of

which the centers of mass of any crowder molecules can not get

into. The entropy of the crowder molecules increases with the

volume within which they can freely move. This free volume is

equal to VKVex, where V is the volume of the solution. As

shown in Fig. 1, let us consider the case where two protein

molecules co-exist with many crowder molecules in solution.

The free volume of the crowders is largest when the protein

molecules are in direct contact with each other, because the

depletion zone of the two protein molecules is smallest due to

overlapping of their depletion zones. Since there are many

crowders in solution, the entropy of the entire system is largest

when protein molecules are in direct contact. According to the

second law of thermodynamics, a spontaneous process takes

place in the direction of increasing entropy, the net effect is that

the two protein molecules tend to form an aggregate, as if an

attractive force exists between the protein molecules. This type

of depletion forces has been measured in colloidal and soft-

matter physics experiments (e.g. Ref. [11]) and also in protein

and DNA solutions [12,13]. This is consistent with the

prediction of Minton and others based on thermodynamics

and the scaled particle theory that the effect of macromolecular

crowding tends to enhance the stability of protein aggregates

by increasing the rate of protein aggregation, relative to the rate

of dissociation [4,7,14,15].

Related to the properties of a single protein molecule, one

may ask what the theory of depletion force would predict, in

particular, about the effects of macromolecular crowding on the

folding and unfolding properties of the protein. One of the

objectives of the present article is to develop such a theoretical

treatment, in which it is predicted that based on the concept of

depletion force the mechanical force required to unfold a protein

molecule increases due to macromolecular crowding. Further-

more, numerical simulations and calculations will be carried out

to give an estimate of the amount of change in mechanical force

and the results are compared with the measured values obtained

in our laboratory. The goal is to shed light on the measured

values of the enhancement factor observed in the single-

molecule mechanical unfolding experiment mentioned above.

Theoretical treatments of the effects of macromolecular

crowding and confinement on protein aggregation and folding
Rp
Rc

Fig. 1. The depletion zones surrounding two hard spheres. The shaded region

denotes the depletion zone. The inner sphere has a radius of Rp and the outer

shell is of the thickness which equals the radius of the crowder molecule, Rc.
properties have a long history. Since 1980s, Minton and

co-workers have studied these effects using thermodynamics

and the scaled particle theory for fluid mixtures [4,7,14–16].

Simple polymer models, such as a Gaussian chain, and

stochastic dynamics have been used in recent studies by

Zhou [17,18] and self-avoiding polymer models used by

Minton [19]. Stimulated by sol–gel experimental results of Wei

and co-workers [20,21], Ping et al. [20–22] have employed a

two-dimensional HP model [23] to study the effects of

confinement and macromolecular crowding on protein stability

and folding/unfolding dynamics. An off-lattice 46 bead model

was used in a molecular dynamics study of the effects of

confinement and crowding by Friedal et al. [24]. Similarly,

detailed simulations using molecular dynamics based on more

realistic models for b-hairpin or b-sheet proteins have been

carried out in the studies of confinement [25] and macromol-

ecular crowding effects [26] by Thirumalai and co-workers.

Harries and Parsegian, on the other hand, have studied the

effects of small cosolutes on protein folding using Monte Carlo

simulations based on a grand canonical ensemble approach

[27]. Furthermore, Kinjo and Tanaka [28] have studied

macromolecular crowding effects using density functional

theory for fluids. The present approach is different from the

above ones, but more along the line of polymer models [17,19].

The organization of the article is as follows: we briefly

review our experimental work on the enhancement of

mechanical unfolding force due to crowding measured using

AFM in Section 2. The theoretical development in applying the

concept of depletion force to protein folding and unfolding will

be described in Section 3. This formulation and some

techniques for polymer science are applied to an off-lattice

three-dimensional (3D) polymer model for a protein molecule

in the calculations of the additional unfolding force contributed

by crowding in Section 4 and the results are presented in

Section 5. This is followed by a discussion and conclusion

section.

2. Brief review of experimental results

The experimental measurements in our lab of the

macromolecular crowding effects on the mechanical unfolding

of protein molecules were carried out using a modified atomic

force microscope [29]. The sample used was ubiquitin

molecules in an N–C linked octamer synthesized via protein

engineering [30], and crowding agent was dextan molecules

with an average molecular weight of 40 kDa (Sigma) and an

average hydrodynamic radius of 3.5 nm [31]. Ubiquitin has

been used widely as a model system for protein folding studies,

and it has also been successfully utilized recently for single

molecule measurements [30,32,33]. Dextran was chosen as the

crowding agent since dextran is inert and highly soluble, and

has been used in many experimental studies of the macromol-

ecular crowding effects. The details of the experiments are

reported elsewhere [8]. Briefly, the ubiquitin polymer was

dissolved in PBS buffer with a protein concentration of 50 mg/

ml, and 20 ml of the protein solution was deposited on a fresh

gold surface. While both the sample and the AFM tip
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Fig. 3. Dependence of the unfolding forces of ubiquitin on the dextran

concentration at a force loading rate of 4.2 nN/s. Each point in the plot is the

average of a number of data points (nZ151, 137, 148 and 207, respectively)

with standard deviations of 33, 34, 37 and 38 pN, respectively.
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immerged in the solution, individual ubiquitin polymers can be

tethered between the tip and the gold surface via non-specific

interactions, and mechanical unfolding can be induced by

stretching the polymerized molecules. During an experiment,

the protein molecules remain attached to the surface, therefore

the same batch of molecules on the gold surface can be studied

in different solution conditions by flushing the liquid chamber

with the desired solution. For our macromolecular crowding

studies, dextran (dissolved in PBS buffer) solutions with

concentrations of 0, 100, 200 and 300 g/l were used.

Fig. 2 shows two ‘force curves’ obtained by pulling ubiquitin

polymers at dextran concentrations of 0 and 200 g/l,

respectively. Each peak in the sawtooth patterns represents the

unfolding of a single protein molecule. The irregular peaks at the

beginning of curves are due to the non-specific interactions

between the tip and the gold surface. By fitting rising part of each

peak to the worm-like-chain model, as shown in Fig. 2, the

contour length increase from a unfolding event was obtained,

which serves as one of the parameters to verify that the observed

peaks are from unfolding of individual protein molecules. The

unfolding force for each ubiquitin molecule is not the same,

because thermal fluctuation plays an important role in such

single molecule experiments. The unfolding rates in the absence

of an applied force can be obtained from a Monte Carlo

simulation [30].

The effects of macromolecular crowding on the mechanical

unfolding of ubiquitin were determined by measuring the

unfolding forces at four different concentrations of dextran.

Fig. 3 shows that the average unfolding force changes from 166

to 201 pN as the dextran concentration increases from 0 to

300 g/l at a pulling rate of 50 nm/s, corresponding to a force

loading rate of 4.2 nN/s. This increase in unfolding forces

corresponds to a reduction of the zero-force unfolding rate by a
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Fig. 2. Force vs. extension curves obtained from stretching ubiquitin polymers

in the presence of 0 (top) and 200 g/l (bottom) of dextran in PBS buffers. The

force loading rate used for these curves was 4.2 nN/s (pulling speedZ50 nm/s).

The rising parts of the force peaks are fitted to the WLC model. The persistence

length used in the fitting was 0.40G0.02 nm. The contour length increment

between adjacent peaks was found to be DLZ24.9G2.4 nm (nZ676), which is

in consistent with the expected value of 24.4 nm from the structure of ubiquitin

[30]. The values of the persistence length and that of DL were found not to be

dependent on the dextran concentration. An automatic fitting procedure was

developed to fit the force curves with two adjustable parameters [8], and it was

found that the values of DL and the persistence length remain the same at

different dextran concentrations.
factor of 6.2 [8]. It would be interesting to provide a theoretical

base for the understanding of the phenomenon observed.
3. Application of depletion force concept to the effects of

macromolecular crowding on protein folding

As mentioned earlier, the concept of depletion force was

first introduced by Asakura and Oosawa [9] as a force acting

between two suspended colloidal particles in a solution of

macromolecules. In the presence of N macromolecules a force

acting between two colloidal particles can be expressed as a

differential of the canonical partition function with respect to

the inter-particle distance a,

Fd ZNkBT
vln QðV ;TÞ

va
(1)

where Q(V,T) is a single-particle (referring to the macromol-

ecules here and to the macromolecular crowders later for our

purpose) partition function and a is inter-particle distance, V is

the total volume of the solution, and T the temperature of the

system. For a system at constant T and V, the momentum space

part of the partition function is independent of a and only the

configuration space part, Qr, of the partition function needs to

be included in Q(V,T). Qr, on the other hand, is given by

Qr Z

ð
V

eKbVððr ;aÞd3r (2)

where Vððr ; aÞ is the potential energy of a macromolecule

located at ðr when two colloidal particles are separated by a

distance a. Since it is assumed that no interaction potentials

exist between macromolecules, between colloidal particles, or

between a macromolecule and a particle, Qr is simply equal to

the volume available to a macromolecule, which is equal to

VKVex, where Vex is the excluded volume, given by the total

volume of the depletion zones. Then the depletion force, Fd, is

given approximately by

Fd ZK
NkBT

V

� �
vVex

va
(3)
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Using the van’t Hoff formula for dilute solutions, one can

write Eq. (3) in the form

Fd ZKpos

vVex

va
(4)

where pos is the osmotic pressure due to the macromolecules.

For two colloidal particles it was further showed that the

depletion force, the effective attractive force acting between

two particles, could be written as

Fd ZKposA (5)

where A is the maximal cross-section area of the overlapping

depletion zone when two colloidal particles are close to each

other such that the closest distance between the surfaces of two

spherical particles is within a distance of the diameter of a

macromolecule.

In the form of Eq. (5), the depletion force has a simple

physical interpretation, that is, it is a force due to the imbalance

of the osmotic pressure acting on the surfaces of two colloidal

particles, when they are close to each other by a distance less

than the diameter of a macromolecule. Eq. (5) was also derived

by Vrij [10]. This form, or equivalently Eq. (4), also has an

immediate generalization where the concentration of the

macromolecules is high so that the van’t Hoff formula is not

valid. Eq. (4) is the expression of the depletion force which will

be used to calculate the change of mechanical force required to

unfold a protein molecule due to the presence of macromol-

ecular crowders. The force is non-zero, because as protein

unfolds from its native structure (roughly spherical shape) its

depletion zone increases due to the deformation of the

molecule. For the process of protein unfolding the distance

parameter in Eq. (4) is replaced by a reaction coordinate, such

as the end-to-end distance or the radius of gyration. The reason

that the sign in Eqs. (4) or (5) is negative is because it is an

effective attractive force acting between two colloidal

particles. The negative sign for a protein folding process

means that the depletion force acts to push the protein to

assume the most compact structure, that is, the structure with

the least depletion zone. Thus, it acts to enhance the stability of

the native structure. This force is entropic in origin, because for

simplicity it is derived by assuming that the particles and

macromolecules are hard spheres. This force must then arise

from entropic part of the Helmhotz free energy. The entropy of

the whole system increases as the macromolecules gain free

space in which they can move.
4. Numerical simulations based on a 3D polymer model

The depletion force causes an increase in the force required

to unfold a protein in solutions crowded with macromolecules.

The results of numerical simulations to calculate the depletion

force are presented in this section. The intention is to simulate

the experimental results described in Section 2.

In order to calculate the depletion force using Eq. (4), an

expression of the osmotic pressure corresponding to the

dextran solution and a relation between Vex and the end-to-

end distance, S, are needed. Osmotic pressure can be
approximated by expressions derived based on the scaled

particle theory [34–36]. The functional relation between Vex

and S can be calculated in principle using all-atom molecular

dynamics simulation under mechanical stretching at a constant

pulling speed. However, the experimental pulling speed is too

slow, i.e. the time scale is too long, to simulate realistically

using currently available methods. The calculation of the

surface area and the associated depletion zone (excluded

volume) of a real protein molecule is another challenging

problem. As mentioned above, polymer models [4,17,19] as

well as lattice models [20–22] are often used in the studies of

macromolecular crowding and confinement. More recently,

molecular dynamics has been used [23–25] in these simu-

lations as well. In the present article we shall find a functional

relation based on simulations in terms of an off-lattice three-

dimensional (3D) polymer model [22]. The goal is to provide

guides to qualitative behaviors of protein–crowder systems.

The 3D polymer model consists of 76 monomers, each

corresponding to an amino acid residue of ubiquitin. Each

monomer is represented by a hard sphere (bead) of the size,

RmZ0.125 nm and the bond length between two neighboring

monomers (bead center to bead center) is bZ0.34 nm. A

dextran molecule is represented by a hard sphere of size, Rc,

determined by the molecular weight of the dextran molecules.

To find a statistical relation between the excluded volume

and the end-to-end distance, one needs a large number of

polymer conformations. Since the total number of confor-

mations is astronomically large, a Monte Carlo (MC) process is

used to generate a random sampling of conformations. One

way to carry out such a sampling process is to start with

conformations of a self-avoiding polymer and then use a pivot

algorithm to generate as many random conformations as one

needs. The starting conformations are, however, obtained

through a 3D growth algorithm. A pivot/growth algorithm

developed in polymer sciences [37,38] works as follows:

1. Grow a self-avoiding conformation of the 76mer or initiate

with the straight-rod conformation. The latter is mainly aimed

at obtaining structures with extended conformations, for they

are more time-consuming to obtain using a growth algorithm.

2. Choose randomly a bead along the polymer chain. This bead

separates the polymer into a short and a long segment. Rotate

the short segment about the pivot bead through a triplet of

angles (a, b, g) along the x-, y-, and z-axes. These axes are

arbitrarily chosen and, once chosen, are fixed in the space. The

angles are randomly selected within a range, which is

empirically determined to be within K0.58!angle!0.58.

3. Once a self-avoiding conformation is obtained, accept it and

proceed with the excluded volume calculation.

4. Repeat Steps 2–3 to generate the next conformation.

5. Repeat Steps 1–4 for enough MC steps, until good statistics

are collected.

For a given conformation obtained using the pivot/growth

algorithm, its excluded volume is calculated using another

Monte Carlo procedure, described as follows:
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1. For this conformation, find a minimal rectangular paralle-

lepiped enveloping the depletion zone of the polymer

completely.

2. Choose randomly a point inside the rectangular parallele-

piped; if the distance of this point and the center of any

monomer is less than the sum of the monomer radius and

crowder radius (RmCRc), then it will be counted; otherwise

it will not.

3. After a large number of random points are drawn,

approximate the excluded volume by the product of the

box volume and the count ratio.
Fig. 5. Depletion force-extension profile. Shown here are curves for crowders

of size 1 nm (thicker line) and 3 nm (thinner line), respectively. The depletion

force, Fd, is in unit of 1 pN and end-to-end extension, S, in unit of 0.1 nm. The

volume fraction is fixed at 40% and temperature is set at 300 K.
5. Results of numerical simulations

The methods outlined in the previous sections have been

applied to the 76mer in a solution of macromolecular crowders

and the results of the calculated excluded volume are presented

in Fig. 4, which show that Vex is an increasing function of both

the end-to-end distance S of the polymer and the size of

crowders. About 10,000 self-avoiding chains were generated

by the growth mechanism and for each chain 2000

conformations were obtained by pivot rotations, thus in total

2!107 conformations were studied for its Vex and S to obtain a

single curve in Fig. 4. Since S is binned into 2000 values in

each curve, on the average each Vex is an average of 10,000

conformations. This is, of course, true only in the average

sense, for the probability distribution of the end-to-end distance

follows a Gaussian distribution. Fig. 4 also indicates that the

functional relation between the excluded volume and the end-

to-end distance shows a qualitative change of behavior at about

7 nm. As a result, curves in Fig. 5 discussed below peak around

7 nm as well.

For the calculation of the depletion force based on Eq. (4),

the derivative vVex=va is needed, which can be obtained by a

linear fit to a small segment of a curve such as those presented

in Fig. 4. The slope of the fitting line gives the derivative

needed. The osmotic pressure factor appearing in Eq. (4), on

the other hand, can be approximated by an expression obtained
Fig. 4. Natural logarithm of excluded volume, ln(Vex) as a function of the end-

to-end distance, S, of the 3D off-lattice 76mer. S is in unit of 0.1 nm and Vex in

nm3. In the order from bottom up, the 10 curves correspond to simulations for

crowders of size 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 4.5, and 5 nm.
using the scaled particle theory for fluid mixtures [33–35]. The

expression states that

pos Z rkBT
1C4C42

ð1K4Þ3
(6)

where 4 is the volume fraction and r the number density of the

macromolecular crowders in solution. Two examples of the

depletion force curves calculated based on Eqs. (4) and (6) are

presented in Fig. 5, which show that depletion force first rises,

then decreases, with S and peaks around SZ7 nm.

To see how depletion force depends on the volume fraction

of the macromolecular crowders, the maximal depletion force,

such as those peaks in Fig. 5, is plotted as a function of the

volume fraction in Fig. 6. This figure shows that the depletion

force increases with the volume fraction in a curve rising faster

than a linear dependence. This is to be compared with the

experimental results shown in Fig. 3, obtained by averaging

over many data collected. Although in both cases depletion

force increases with the crowder concentration, the theoretical

curve of Fig. 6 predicts a faster rising trend than that observed

experimentally. Furthermore, the magnitude of theoretical

predicted value (w4 pN) at 4Z0.3 is about one order

magnitude smaller than the observed value (w35 pN) at
Fig. 6. Maximum depletion force (Fd) versus the volume fraction of crowders

(f) of radius 3 nm. Fd is in unit of pN.



Fig. 7. The maximum depletion force plotted as a function of both the crowder

volume fraction and crowder size. Each number along the abscissa is the

crowder size in unit of 1 nm. Each size group includes four increasing crowder

volume fractions: 10, 20, 30, and 40%, respectively.
Fig. 8. Depletion free energy (in unit of kBT) plotted against end-to-end

distance (in unit of 0.1 nm) of the polymer at a fixed volume fraction of 28%.

From the top down the crowder size goes from 0.5 to 5 nm uniformly with

0.5 nm spacing.
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50 nm/s pulling rate. However, the experimental value may

decrease, if the limit of zero pulling rate is taken. The above

theoretical calculation is done at this limit.

Related to some experimental measurements, e.g. Ref. [4], it

is interesting to investigate how depletion force varies with the

crowder size, when the volume fraction of the crowders is

fixed. In Fig. 7, depletion force is plotted as a function of

crowder radius and volume fraction. The figure shows that the

depletion force decreases rapidly with Rc for a fixed 4. The

main contribution seems to come from the number density

factor in the osmotic expression, Eq. (6), where 4 is fixed. A

minor contribution may come from the derivative factor,

vVex=va, in Eq. (4). Thus depletion force is essentially inversely

proportional to Rc.

By integrating the depletion force over the reaction

coordinate for protein folding, here the end-to-end distance,

one can obtain DDGZD(GuKGf)Z(GuKGf)cK(GuKGf)0.

This is a measure of the change of free energy (or stability)

between the folded conformation (f) and unfolded confor-

mation (u) due to the effect of macromolecular crowding,

denoted by the subscript c. Integrating Eq. (4), one obtains,

DDGðSÞZ

ðS

Smin

FdðsÞdSZ pos½VexðsÞKVex;min�; (7)

where Vex(S) and Vex,min are the excluded volumes at the end-

to-end distance S and at the minimal S, Smin. When S equals to

the average S for the ensemble of unfolded conformations,

DDG(S) becomes equal to DDG, as defined above. Examples of

DDG(S) are shown in Fig. 8, which shows that DDG(S)

increases with S and overall change of free energy, DDG,

decreases with the crowder size for a fixed volume fraction.

Our results seem to be in the right order of magnitude (e.g.

DDGZ4.2kBT for RcZ3 nm) when compared to other studies

[19].
6. Discussion and conclusion

Based on the concept of depletion force we have

calculated the enhancement of the mechanical force required
to unfold an ubiquitin molecule in a solution of dextran.

Our calculations are done using an off-lattice 3D polymer

model and the change of the excluded volume as protein

unfolds is calculated. Using this quantity and an expression

for the osmotic pressure of dextran from the scaled particle

theory, we calculated the depletion force due to macromol-

ecular crowding. Our theoretical results are only in

qualitative agreement with our experimental measurements,

carried out in single-molecule AFM stretching experiments

on ubiquitin.

We discuss some of possible sources of discrepancy in this

section. The theoretical calculations and simulations are

carried out for systems in equilibrium, while the mechanical

force-induced unfolding of protein molecules observed in our

experimental measurements is a process far from equilibrium,

even at the slowest pulling speed used in the experiments

(50 nm/s). As usual, the maximal unfolding force increases

with the pulling rate due to dissipated energy [39]. Therefore,

the predicted value for the unfolding force represents a lower

limit of the measured force.

The discrepancy could also partly be due to the fact that the

surface area of a real protein and thus its excluded volume are

very different from what are calculated here based on a 3D

bead model, where the surface area is relatively smooth

compared to a real protein, which has more complicated

backbone and side chain structures. It may be that our polymer

model is more suitable for simulations of random coil-compact

transitions of homopolymers than folding transitions of real

proteins. We are here using the former transitions to

approximate the latter transitions.

Continuing along the same reasoning, it is believed that the

formalism derived in the present article based on the theory of

depletion force and scaled particle theory is essentially correct,

but the method of calculating the excluded volume can be

improved. Therefore, a next step could be static calculations

using an all-atom models for a protein, based on which we

should calculate the surface area and excluded volume of real

protein in its native and mechanically stretched conformations.
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Other possibilities related to measurements which at this

point still need to be eliminated are that specific interactions

exist between dextran molecules and ubiquitin which stabilize

the native conformation more relative to the unfolded

conformations. The effects of pulling rate and solution

viscosity may change the magnitude and the shape of

functional relation between the extra mechanical force required

and crowder concentration. Related to these possibilities, more

experiments using different crowders will be carried out.
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